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Abstract: First total synthesis of extended gun@-ganglioside IV4GalNAc8GMlb. 8-D-GalpNAc- 
(l~4)-[a-D-Neup5Ac-(2~3)]-~-D-Galp-(l~3)-~-D-Gal~NAc-(l~4)-~-D-Galp-(1~4)-B_D-Glcp- 
(l+ I)-Cer was achieved in a stereocontrolled manner. 

In 1981, a new gangfio-monosialylpentaosylceramide. was isolated from Tay-Sachs brains 

and the structure was assigned as IV4GalNAcGMlb, 1 from enzymic degradation2. In 1987, this 

extended gangfio-series glycosphingolipids 1 and the glycolyl analogue 2 were isolated from 

mouse spleen3v4 and l H-n.m.r. data of 2 was in reasonable agreement with the proposed 

structure 3. Since 1 and 2 were isolated only from mouse spleen T lymphocytes but not from B 

lymphocytes, these extended ganglia-gangliosides may be speculated to play a role in either 

immune cell circulation or localization in lymphoid organs5. In 1988. 1 was also identified as an 

antigen for monoclonal IgM in a patient with neuropathy6. We now describe first total synthesis 

of 1 in a stereocontrolled manner. 

B-D- GalpNAc - (I- 4) 1 
P-D-Gdp-(1-3)-P-D WlpNAc-(I 

-I 

-4)-B- D- Wlp-(l-4)- I?- D- Glcp-(l-l)- Car 

a-D- NeupSR- (Z-3) 1, R=Ac 

2 R.QC 

/I 

B-D- GdpNAc-(l-4) 
1 

B-D-Galp-(l-3)-~-D- GdpNAc-(1-4)-)PlF alp-(l-47 062 

a-D- NwpSAc- (213) -I 

L 
pl” _Jw- u-x NO+C&, 

NHCOC33H,, 

f 

P-D- GdpNAc-(l-4) 
1 
D- Gdp- (I -x 

a-D- N.“pSAc-(2-3) 

OAc 

Sehomo 1 (Gc = COCH20H, Piv I COBu’) 

1435 



1436 

Based on a retrosynthetic analysis of the target molecule 1 (Scheme 1). carbohydrate donor 

3 should be armed with a pivaloyl auxiliary7 at O-2a to achieve an efftcient coupling with 

ceramide derivative 4. The glycohexaosyl sequence of 3 may be devided into two glycotriosyl 

sequences 5 and 6. The glycosyl donor 5 may be obtainable by glycosylation of compound ~8 

with the bromide 79, while the known diol 910 will be employed as an equivalent to the glycosyl 

acceptor 6. 

Silver trifiate and powdered molecular sieves 4A promoted coupling1 1 of 8 with 1.5 

equivalents of 7 in CH2Cl2 gave 10 12 (86%). which was converted into 1212 in 4 steps via 11. (i 

LiI in Py13, 115O. 3h. ii NH2NH2eH20 in EtOH. rellux, 7h. iii Ac20 in Py. iv CH2N2 in Et20-MeOH, 

78% overall). Compound 12 was smoothly converted into a-trichloracetimidate 1512 via 1312 and 

1412 in 4 steps (i 10% W-C, H2 in MeOH, ii Ac20 in Py, iii NH2NH2 l AcOH in DMF. 50”. 5 min14, iv 

C13CCN, DBU in (CH2Cl)2*5, 83% overall). 

Having prepared the glycosyl donor 15 designed to be equivalent with 5. crucial 

glycosylation of diol 9 with 0.7 molar equivalents 16 of 15 was performed in the presence of 

BF3*OEt215 and powdered molecular sieves 4A in (CH2Cl)2 to give, after separation by silica gel 

chromatography in 25:l CHC13-MeOH, two compounds 1612 and 1912 in 43 and 7% yield, 

respectively. The structure of the minor product 19 was assigned from the l H-n.m.r. data 

(HOHAHA) of the acetylated derivative 20 12 which showed a deshielded signal for H-3c at 8 4.672 

(dd, 3.0 and 11.2 Hz) as well as a signal for H-ld at 8 4.498 (d, 7.9 Hz). The structure of the major 

product 16 was assigned after partial deprotection into 1812 in two steps (i NaOMe in MeOH then 

in H20-MeOH. ii H2/Pd-C. 47% overall). 1H-N.m.r. data taken in D20 at 24O was in reasonable 

agreement with the data17 for related oligosaccharides and contained a signal for H-ld at 8 4.528 

(d, 7.5 Hz), supporting that configuration of a newly introduced glycosidic linkage at C-ld was 8- 

D. The key intermediate 16 was further converted into the glycohexaosyl trichloracetimidate 

2212 via 1712 and 2112 in 4 steps (i 10% W-C, H2 in MeOH. ii Ac20 in Py, iii NH2NHpAcOH in DMF, 

50’. 5 min. iv C13CCN. DBU in (CH2Cl)2, 28% overall). 

Finally. glycosylation of 4 with 0.7 molar equivalents of the imidate 22 in the presence of 

BF3*0Et2 and powdered molecular sieves 4A in CHC13 afforded a 15% yield of the desired 

compound 23. The structure of 23 was assignable from its lH-n.m.r. data (HOHAHA) which 

showed a signal for H-la at 8 4.417 (d, 7.7 Hz) as well as a signal for both H-4c and H4e at 8 5.349 

(d, 2.9 Hz). confirming both the 8-D configuration at newly introduced glycosidic linkage at C-la 

and the regiochemistry (ld-13~) for the previously introduced glycosidic linkage at C-ld. 

Deprotection of 23 into 1 was achieved in 74% yield by successive treatment with 0.06M NaOMe in 
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1:l MeOH-THF and then with 0.03M NaOH in 1:l:l H20-MeOH-THF. The lH-tt.m.r. data of synthetic 1 

and those3 of natural 2 were found to be in reasonable agreement. 

In summary first stereocontrolled total synthesis of IV4GalNAcGMlb 1 was achieved by 

employing a glycotriosyl trichloroacetimidate 15 and a glycohexaosyl trichloroacetimidate 22 as 

the key glycosyl donors for the crucial stereoselective glycosylations. 
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